Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-7x^{2}-14x-6=0
Subtract 6 from both sides.
±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -6 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-8x-6=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-7x^{2}-14x-6 by x+1 to get x^{2}-8x-6. Solve the equation where the result equals to 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-6\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and -6 for c in the quadratic formula.
x=\frac{8±2\sqrt{22}}{2}
Do the calculations.
x=4-\sqrt{22} x=\sqrt{22}+4
Solve the equation x^{2}-8x-6=0 when ± is plus and when ± is minus.
x=-1 x=4-\sqrt{22} x=\sqrt{22}+4
List all found solutions.