Evaluate
x^{3}+\frac{2x^{2}}{7}+\frac{x}{8}
Factor
\frac{x\left(56x^{2}+16x+7\right)}{56}
Graph
Share
Copied to clipboard
\frac{7x^{3}}{7}+\frac{2x^{2}}{7}+\frac{x}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3} times \frac{7}{7}.
\frac{7x^{3}+2x^{2}}{7}+\frac{x}{8}
Since \frac{7x^{3}}{7} and \frac{2x^{2}}{7} have the same denominator, add them by adding their numerators.
\frac{8\left(7x^{3}+2x^{2}\right)}{56}+\frac{7x}{56}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 8 is 56. Multiply \frac{7x^{3}+2x^{2}}{7} times \frac{8}{8}. Multiply \frac{x}{8} times \frac{7}{7}.
\frac{8\left(7x^{3}+2x^{2}\right)+7x}{56}
Since \frac{8\left(7x^{3}+2x^{2}\right)}{56} and \frac{7x}{56} have the same denominator, add them by adding their numerators.
\frac{56x^{3}+16x^{2}+7x}{56}
Do the multiplications in 8\left(7x^{3}+2x^{2}\right)+7x.
\frac{56x^{3}+16x^{2}+7x}{56}
Factor out \frac{1}{56}.
x\left(56x^{2}+16x+7\right)
Consider 56x^{3}+16x^{2}+7x. Factor out x.
\frac{x\left(56x^{2}+16x+7\right)}{56}
Rewrite the complete factored expression. Polynomial 56x^{2}+16x+7 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}