Solve for g (complex solution)
\left\{\begin{matrix}g=-\frac{x^{2}-1}{2yx^{4}}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{C}\text{, }&\left(x=-1\text{ or }x=1\right)\text{ and }y=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=-\frac{x^{2}-1}{2yx^{4}}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{R}\text{, }&y=0\text{ and }|x|=1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{ig^{-\frac{1}{2}}y^{-\frac{1}{2}}\sqrt{\sqrt{8gy+1}+1}}{2}\text{; }x=\frac{ig^{-\frac{1}{2}}y^{-\frac{1}{2}}\sqrt{\sqrt{8gy+1}+1}}{2}\text{; }x=\frac{g^{-\frac{1}{2}}y^{-\frac{1}{2}}\sqrt{\sqrt{8gy+1}-1}}{2}\text{; }x=-\frac{g^{-\frac{1}{2}}y^{-\frac{1}{2}}\sqrt{\sqrt{8gy+1}-1}}{2}\text{, }&y\neq 0\text{ and }g\neq 0\\x=-1\text{; }x=1\text{, }&g=0\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{-\frac{\sqrt{8gy+1}+1}{gy}}}{2}\text{; }x=-\frac{\sqrt{-\frac{\sqrt{8gy+1}+1}{gy}}}{2}\text{, }&\left(g>0\text{ and }y<0\text{ and }y\geq -\frac{1}{8g}\right)\text{ or }\left(y=-\frac{1}{8g}\text{ and }g\neq 0\right)\text{ or }\left(g<0\text{ and }y>0\text{ and }y\leq -\frac{1}{8g}\right)\\x=\frac{\sqrt{\frac{\sqrt{8gy+1}-1}{gy}}}{2}\text{; }x=-\frac{\sqrt{\frac{\sqrt{8gy+1}-1}{gy}}}{2}\text{, }&\left(y\leq -\frac{1}{8g}\text{ and }y>0\text{ and }g<0\right)\text{ or }\left(y\geq -\frac{1}{8g}\text{ and }y<0\text{ and }g>0\right)\text{ or }\left(y\neq 0\text{ and }y<-\frac{1}{8g}\text{ and }g<0\right)\text{ or }\left(y\neq 0\text{ and }y>-\frac{1}{8g}\text{ and }g>0\right)\text{ or }\left(y=-\frac{1}{8g}\text{ and }g\neq 0\right)\\x=1\text{; }x=-1\text{, }&g=0\text{ or }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
xx+2x^{2}ygxx=1
Multiply both sides of the equation by x.
x^{2}+2x^{2}ygxx=1
Multiply x and x to get x^{2}.
x^{2}+2x^{3}ygx=1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}+2x^{4}yg=1
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
2x^{4}yg=1-x^{2}
Subtract x^{2} from both sides.
2yx^{4}g=1-x^{2}
The equation is in standard form.
\frac{2yx^{4}g}{2yx^{4}}=\frac{1-x^{2}}{2yx^{4}}
Divide both sides by 2x^{4}y.
g=\frac{1-x^{2}}{2yx^{4}}
Dividing by 2x^{4}y undoes the multiplication by 2x^{4}y.
xx+2x^{2}ygxx=1
Multiply both sides of the equation by x.
x^{2}+2x^{2}ygxx=1
Multiply x and x to get x^{2}.
x^{2}+2x^{3}ygx=1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}+2x^{4}yg=1
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
2x^{4}yg=1-x^{2}
Subtract x^{2} from both sides.
2yx^{4}g=1-x^{2}
The equation is in standard form.
\frac{2yx^{4}g}{2yx^{4}}=\frac{1-x^{2}}{2yx^{4}}
Divide both sides by 2x^{4}y.
g=\frac{1-x^{2}}{2yx^{4}}
Dividing by 2x^{4}y undoes the multiplication by 2x^{4}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}