Solve for g (complex solution)
\left\{\begin{matrix}g=\frac{x^{2}+x-3}{xy}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{C}\text{, }&\left(x=\frac{-\sqrt{13}-1}{2}\text{ or }x=\frac{\sqrt{13}-1}{2}\right)\text{ and }y=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{x^{2}+x-3}{xy}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{R}\text{, }&\left(x=\frac{-\sqrt{13}-1}{2}\text{ or }x=\frac{\sqrt{13}-1}{2}\right)\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{-\sqrt{13+\left(gy\right)^{2}-2gy}+gy-1}{2}
x=\frac{\sqrt{13+\left(gy\right)^{2}-2gy}+gy-1}{2}
Graph
Quiz
Linear Equation
5 problems similar to:
f ( x ) = x + 1 \quad y \quad g ( x ) = x ^ { 2 } + 2 x - 3
Share
Copied to clipboard
1ygx=x^{2}+2x-3-x
Subtract x from both sides.
1ygx=x^{2}+x-3
Combine 2x and -x to get x.
gxy=x^{2}+x-3
Reorder the terms.
xyg=x^{2}+x-3
The equation is in standard form.
\frac{xyg}{xy}=\frac{x^{2}+x-3}{xy}
Divide both sides by yx.
g=\frac{x^{2}+x-3}{xy}
Dividing by yx undoes the multiplication by yx.
1ygx=x^{2}+2x-3-x
Subtract x from both sides.
1ygx=x^{2}+x-3
Combine 2x and -x to get x.
gxy=x^{2}+x-3
Reorder the terms.
xyg=x^{2}+x-3
The equation is in standard form.
\frac{xyg}{xy}=\frac{x^{2}+x-3}{xy}
Divide both sides by yx.
g=\frac{x^{2}+x-3}{xy}
Dividing by yx undoes the multiplication by yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}