Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

ax^{2}+bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx
Swap sides so that all variable terms are on the left hand side.
ax^{2}+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx-bx
Subtract bx from both sides.
ax^{2}=fx-bx-c\frac{\mathrm{d}}{\mathrm{d}x}(x)
Subtract c\frac{\mathrm{d}}{\mathrm{d}x}(x) from both sides.
ax^{2}=-c\frac{\mathrm{d}}{\mathrm{d}x}(x)+fx-bx
Reorder the terms.
x^{2}a=fx-bx-c
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{fx-bx-c}{x^{2}}
Divide both sides by x^{2}.
a=\frac{fx-bx-c}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
ax^{2}+bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx
Swap sides so that all variable terms are on the left hand side.
bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx-ax^{2}
Subtract ax^{2} from both sides.
bx=fx-ax^{2}-c\frac{\mathrm{d}}{\mathrm{d}x}(x)
Subtract c\frac{\mathrm{d}}{\mathrm{d}x}(x) from both sides.
bx=-c\frac{\mathrm{d}}{\mathrm{d}x}(x)+fx-ax^{2}
Reorder the terms.
xb=-ax^{2}+fx-c
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+fx-c}{x}
Divide both sides by x.
b=\frac{-ax^{2}+fx-c}{x}
Dividing by x undoes the multiplication by x.
b=-ax+f-\frac{c}{x}
Divide -c+fx-ax^{2} by x.
ax^{2}+bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx
Swap sides so that all variable terms are on the left hand side.
ax^{2}+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx-bx
Subtract bx from both sides.
ax^{2}=fx-bx-c\frac{\mathrm{d}}{\mathrm{d}x}(x)
Subtract c\frac{\mathrm{d}}{\mathrm{d}x}(x) from both sides.
ax^{2}=-c\frac{\mathrm{d}}{\mathrm{d}x}(x)+fx-bx
Reorder the terms.
x^{2}a=fx-bx-c
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{fx-bx-c}{x^{2}}
Divide both sides by x^{2}.
a=\frac{fx-bx-c}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
ax^{2}+bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx
Swap sides so that all variable terms are on the left hand side.
bx+c\frac{\mathrm{d}}{\mathrm{d}x}(x)=fx-ax^{2}
Subtract ax^{2} from both sides.
bx=fx-ax^{2}-c\frac{\mathrm{d}}{\mathrm{d}x}(x)
Subtract c\frac{\mathrm{d}}{\mathrm{d}x}(x) from both sides.
bx=-c\frac{\mathrm{d}}{\mathrm{d}x}(x)+fx-ax^{2}
Reorder the terms.
xb=-ax^{2}+fx-c
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+fx-c}{x}
Divide both sides by x.
b=\frac{-ax^{2}+fx-c}{x}
Dividing by x undoes the multiplication by x.
b=-ax+f-\frac{c}{x}
Divide -c+fx-ax^{2} by x.