Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-3 ab=7\left(-10\right)=-70
Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-10 b=7
The solution is the pair that gives sum -3.
\left(7x^{2}-10x\right)+\left(7x-10\right)
Rewrite 7x^{2}-3x-10 as \left(7x^{2}-10x\right)+\left(7x-10\right).
x\left(7x-10\right)+7x-10
Factor out x in 7x^{2}-10x.
\left(7x-10\right)\left(x+1\right)
Factor out common term 7x-10 by using distributive property.
7x^{2}-3x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-10\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-10\right)}}{2\times 7}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-10\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-3\right)±\sqrt{9+280}}{2\times 7}
Multiply -28 times -10.
x=\frac{-\left(-3\right)±\sqrt{289}}{2\times 7}
Add 9 to 280.
x=\frac{-\left(-3\right)±17}{2\times 7}
Take the square root of 289.
x=\frac{3±17}{2\times 7}
The opposite of -3 is 3.
x=\frac{3±17}{14}
Multiply 2 times 7.
x=\frac{20}{14}
Now solve the equation x=\frac{3±17}{14} when ± is plus. Add 3 to 17.
x=\frac{10}{7}
Reduce the fraction \frac{20}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{14}{14}
Now solve the equation x=\frac{3±17}{14} when ± is minus. Subtract 17 from 3.
x=-1
Divide -14 by 14.
7x^{2}-3x-10=7\left(x-\frac{10}{7}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{10}{7} for x_{1} and -1 for x_{2}.
7x^{2}-3x-10=7\left(x-\frac{10}{7}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
7x^{2}-3x-10=7\times \frac{7x-10}{7}\left(x+1\right)
Subtract \frac{10}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
7x^{2}-3x-10=\left(7x-10\right)\left(x+1\right)
Cancel out 7, the greatest common factor in 7 and 7.
x ^ 2 -\frac{3}{7}x -\frac{10}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 7
r + s = \frac{3}{7} rs = -\frac{10}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{14} - u s = \frac{3}{14} + u
Two numbers r and s sum up to \frac{3}{7} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{7} = \frac{3}{14}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{14} - u) (\frac{3}{14} + u) = -\frac{10}{7}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{10}{7}
\frac{9}{196} - u^2 = -\frac{10}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{10}{7}-\frac{9}{196} = -\frac{289}{196}
Simplify the expression by subtracting \frac{9}{196} on both sides
u^2 = \frac{289}{196} u = \pm\sqrt{\frac{289}{196}} = \pm \frac{17}{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{14} - \frac{17}{14} = -1.000 s = \frac{3}{14} + \frac{17}{14} = 1.429
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.