Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(x-12x^{2}+4)
Combine 6x and -5x to get x.
-12x^{2}+x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)\times 4}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\left(-12\right)\times 4}}{2\left(-12\right)}
Square 1.
x=\frac{-1±\sqrt{1+48\times 4}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-1±\sqrt{1+192}}{2\left(-12\right)}
Multiply 48 times 4.
x=\frac{-1±\sqrt{193}}{2\left(-12\right)}
Add 1 to 192.
x=\frac{-1±\sqrt{193}}{-24}
Multiply 2 times -12.
x=\frac{\sqrt{193}-1}{-24}
Now solve the equation x=\frac{-1±\sqrt{193}}{-24} when ± is plus. Add -1 to \sqrt{193}.
x=\frac{1-\sqrt{193}}{24}
Divide -1+\sqrt{193} by -24.
x=\frac{-\sqrt{193}-1}{-24}
Now solve the equation x=\frac{-1±\sqrt{193}}{-24} when ± is minus. Subtract \sqrt{193} from -1.
x=\frac{\sqrt{193}+1}{24}
Divide -1-\sqrt{193} by -24.
-12x^{2}+x+4=-12\left(x-\frac{1-\sqrt{193}}{24}\right)\left(x-\frac{\sqrt{193}+1}{24}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{193}}{24} for x_{1} and \frac{1+\sqrt{193}}{24} for x_{2}.
x-12x^{2}+4
Combine 6x and -5x to get x.