Solve for g
\left\{\begin{matrix}g=\frac{3x^{3}-9x^{2}+20}{9yx^{2}}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{R}\text{, }&x=-\sqrt[3]{\frac{2\sqrt{10}+7}{3}}-\sqrt[3]{\frac{7-2\sqrt{10}}{3}}+1\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
6x^{3}+6x^{2}+9x^{2}yg=9x^{3}-3x^{2}+20
Multiply x and x to get x^{2}.
6x^{2}+9x^{2}yg=9x^{3}-3x^{2}+20-6x^{3}
Subtract 6x^{3} from both sides.
6x^{2}+9x^{2}yg=3x^{3}-3x^{2}+20
Combine 9x^{3} and -6x^{3} to get 3x^{3}.
9x^{2}yg=3x^{3}-3x^{2}+20-6x^{2}
Subtract 6x^{2} from both sides.
9x^{2}yg=3x^{3}-9x^{2}+20
Combine -3x^{2} and -6x^{2} to get -9x^{2}.
9yx^{2}g=3x^{3}-9x^{2}+20
The equation is in standard form.
\frac{9yx^{2}g}{9yx^{2}}=\frac{3x^{3}-9x^{2}+20}{9yx^{2}}
Divide both sides by 9x^{2}y.
g=\frac{3x^{3}-9x^{2}+20}{9yx^{2}}
Dividing by 9x^{2}y undoes the multiplication by 9x^{2}y.
g=\frac{\frac{x^{3}}{3}-x^{2}+\frac{20}{9}}{yx^{2}}
Divide 3x^{3}-9x^{2}+20 by 9x^{2}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}