Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-4x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\left(-8\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 5\left(-8\right)}}{2\times 5}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-20\left(-8\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-4\right)±\sqrt{16+160}}{2\times 5}
Multiply -20 times -8.
x=\frac{-\left(-4\right)±\sqrt{176}}{2\times 5}
Add 16 to 160.
x=\frac{-\left(-4\right)±4\sqrt{11}}{2\times 5}
Take the square root of 176.
x=\frac{4±4\sqrt{11}}{2\times 5}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{11}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{11}+4}{10}
Now solve the equation x=\frac{4±4\sqrt{11}}{10} when ± is plus. Add 4 to 4\sqrt{11}.
x=\frac{2\sqrt{11}+2}{5}
Divide 4+4\sqrt{11} by 10.
x=\frac{4-4\sqrt{11}}{10}
Now solve the equation x=\frac{4±4\sqrt{11}}{10} when ± is minus. Subtract 4\sqrt{11} from 4.
x=\frac{2-2\sqrt{11}}{5}
Divide 4-4\sqrt{11} by 10.
5x^{2}-4x-8=5\left(x-\frac{2\sqrt{11}+2}{5}\right)\left(x-\frac{2-2\sqrt{11}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2+2\sqrt{11}}{5} for x_{1} and \frac{2-2\sqrt{11}}{5} for x_{2}.