Solve for g
g=-\frac{11}{4}+\frac{1}{4x}
x\neq 0
Solve for x
x=\frac{1}{4g+11}
g\neq -\frac{11}{4}
Graph
Share
Copied to clipboard
4gx=-6x+1-5x
Subtract 5x from both sides.
4gx=-11x+1
Combine -6x and -5x to get -11x.
4xg=1-11x
The equation is in standard form.
\frac{4xg}{4x}=\frac{1-11x}{4x}
Divide both sides by 4x.
g=\frac{1-11x}{4x}
Dividing by 4x undoes the multiplication by 4x.
g=-\frac{11}{4}+\frac{1}{4x}
Divide -11x+1 by 4x.
5x+4gx+6x=1
Add 6x to both sides.
11x+4gx=1
Combine 5x and 6x to get 11x.
\left(11+4g\right)x=1
Combine all terms containing x.
\left(4g+11\right)x=1
The equation is in standard form.
\frac{\left(4g+11\right)x}{4g+11}=\frac{1}{4g+11}
Divide both sides by 11+4g.
x=\frac{1}{4g+11}
Dividing by 11+4g undoes the multiplication by 11+4g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}