Solve for g
g=-\frac{15}{8}-\frac{1}{4x}
x\neq 0
Solve for x
x=-\frac{2}{8g+15}
g\neq -\frac{15}{8}
Graph
Share
Copied to clipboard
16x+8gx=x-2
Multiply both sides of the equation by 4, the least common multiple of 4,2.
8gx=x-2-16x
Subtract 16x from both sides.
8gx=-15x-2
Combine x and -16x to get -15x.
8xg=-15x-2
The equation is in standard form.
\frac{8xg}{8x}=\frac{-15x-2}{8x}
Divide both sides by 8x.
g=\frac{-15x-2}{8x}
Dividing by 8x undoes the multiplication by 8x.
g=-\frac{15}{8}-\frac{1}{4x}
Divide -15x-2 by 8x.
16x+8gx=x-2
Multiply both sides of the equation by 4, the least common multiple of 4,2.
16x+8gx-x=-2
Subtract x from both sides.
15x+8gx=-2
Combine 16x and -x to get 15x.
\left(15+8g\right)x=-2
Combine all terms containing x.
\left(8g+15\right)x=-2
The equation is in standard form.
\frac{\left(8g+15\right)x}{8g+15}=-\frac{2}{8g+15}
Divide both sides by 15+8g.
x=-\frac{2}{8g+15}
Dividing by 15+8g undoes the multiplication by 15+8g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}