Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}+4x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-16\right)\times 10}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\left(-16\right)\times 10}}{2\left(-16\right)}
Square 4.
x=\frac{-4±\sqrt{16+64\times 10}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-4±\sqrt{16+640}}{2\left(-16\right)}
Multiply 64 times 10.
x=\frac{-4±\sqrt{656}}{2\left(-16\right)}
Add 16 to 640.
x=\frac{-4±4\sqrt{41}}{2\left(-16\right)}
Take the square root of 656.
x=\frac{-4±4\sqrt{41}}{-32}
Multiply 2 times -16.
x=\frac{4\sqrt{41}-4}{-32}
Now solve the equation x=\frac{-4±4\sqrt{41}}{-32} when ± is plus. Add -4 to 4\sqrt{41}.
x=\frac{1-\sqrt{41}}{8}
Divide -4+4\sqrt{41} by -32.
x=\frac{-4\sqrt{41}-4}{-32}
Now solve the equation x=\frac{-4±4\sqrt{41}}{-32} when ± is minus. Subtract 4\sqrt{41} from -4.
x=\frac{\sqrt{41}+1}{8}
Divide -4-4\sqrt{41} by -32.
-16x^{2}+4x+10=-16\left(x-\frac{1-\sqrt{41}}{8}\right)\left(x-\frac{\sqrt{41}+1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{41}}{8} for x_{1} and \frac{1+\sqrt{41}}{8} for x_{2}.