Solve for g (complex solution)
\left\{\begin{matrix}g=\frac{-x^{2}+4x-5}{8xy}\text{, }&x\neq 0\text{ and }y\neq 0\\g\in \mathrm{C}\text{, }&\left(x=2+i\text{ or }x=2-i\right)\text{ and }y=0\end{matrix}\right.
Solve for g
g=\frac{-x^{2}+4x-5}{8xy}
x\neq 0\text{ and }y\neq 0
Solve for x (complex solution)
x=-\sqrt{-16gy+16\left(gy\right)^{2}-1}-4gy+2
x=\sqrt{-16gy+16\left(gy\right)^{2}-1}-4gy+2
Solve for x
x=-\sqrt{-16gy+16\left(gy\right)^{2}-1}-4gy+2
x=\sqrt{-16gy+16\left(gy\right)^{2}-1}-4gy+2\text{, }\left(y\geq \frac{8\sqrt{5}|g|+16g}{32g^{2}}\text{ or }y\leq -\frac{8\sqrt{5}|g|-16g}{32g^{2}}\right)\text{ and }g\neq 0
Graph
Quiz
Linear Equation
5 problems similar to:
f ( x ) = 2 x - 8 \quad y \quad g ( x ) = x ^ { 2 } - 2 x + 5
Share
Copied to clipboard
-8ygx=x^{2}-2x+5-2x
Subtract 2x from both sides.
-8ygx=x^{2}-4x+5
Combine -2x and -2x to get -4x.
\left(-8xy\right)g=x^{2}-4x+5
The equation is in standard form.
\frac{\left(-8xy\right)g}{-8xy}=\frac{x^{2}-4x+5}{-8xy}
Divide both sides by -8yx.
g=\frac{x^{2}-4x+5}{-8xy}
Dividing by -8yx undoes the multiplication by -8yx.
g=-\frac{x^{2}-4x+5}{8xy}
Divide 5-4x+x^{2} by -8yx.
-8ygx=x^{2}-2x+5-2x
Subtract 2x from both sides.
-8ygx=x^{2}-4x+5
Combine -2x and -2x to get -4x.
\left(-8xy\right)g=x^{2}-4x+5
The equation is in standard form.
\frac{\left(-8xy\right)g}{-8xy}=\frac{x^{2}-4x+5}{-8xy}
Divide both sides by -8yx.
g=\frac{x^{2}-4x+5}{-8xy}
Dividing by -8yx undoes the multiplication by -8yx.
g=-\frac{x^{2}-4x+5}{8xy}
Divide x^{2}-4x+5 by -8yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}