Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-8x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6\right)\times 2}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6\right)\times 2}}{2\left(-6\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+24\times 2}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-8\right)±\sqrt{64+48}}{2\left(-6\right)}
Multiply 24 times 2.
x=\frac{-\left(-8\right)±\sqrt{112}}{2\left(-6\right)}
Add 64 to 48.
x=\frac{-\left(-8\right)±4\sqrt{7}}{2\left(-6\right)}
Take the square root of 112.
x=\frac{8±4\sqrt{7}}{2\left(-6\right)}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{7}}{-12}
Multiply 2 times -6.
x=\frac{4\sqrt{7}+8}{-12}
Now solve the equation x=\frac{8±4\sqrt{7}}{-12} when ± is plus. Add 8 to 4\sqrt{7}.
x=\frac{-\sqrt{7}-2}{3}
Divide 8+4\sqrt{7} by -12.
x=\frac{8-4\sqrt{7}}{-12}
Now solve the equation x=\frac{8±4\sqrt{7}}{-12} when ± is minus. Subtract 4\sqrt{7} from 8.
x=\frac{\sqrt{7}-2}{3}
Divide 8-4\sqrt{7} by -12.
-6x^{2}-8x+2=-6\left(x-\frac{-\sqrt{7}-2}{3}\right)\left(x-\frac{\sqrt{7}-2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-2-\sqrt{7}}{3} for x_{1} and \frac{-2+\sqrt{7}}{3} for x_{2}.