Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+2x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{-2±\sqrt{68}}{2\left(-1\right)}
Add 4 to 64.
x=\frac{-2±2\sqrt{17}}{2\left(-1\right)}
Take the square root of 68.
x=\frac{-2±2\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{17}-2}{-2}
Now solve the equation x=\frac{-2±2\sqrt{17}}{-2} when ± is plus. Add -2 to 2\sqrt{17}.
x=1-\sqrt{17}
Divide -2+2\sqrt{17} by -2.
x=\frac{-2\sqrt{17}-2}{-2}
Now solve the equation x=\frac{-2±2\sqrt{17}}{-2} when ± is minus. Subtract 2\sqrt{17} from -2.
x=\sqrt{17}+1
Divide -2-2\sqrt{17} by -2.
-x^{2}+2x+16=-\left(x-\left(1-\sqrt{17}\right)\right)\left(x-\left(\sqrt{17}+1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1-\sqrt{17} for x_{1} and 1+\sqrt{17} for x_{2}.