Factor
\left(3x-1\right)\left(5x+3\right)
Evaluate
\left(3x-1\right)\left(5x+3\right)
Graph
Share
Copied to clipboard
a+b=4 ab=15\left(-3\right)=-45
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-5 b=9
The solution is the pair that gives sum 4.
\left(15x^{2}-5x\right)+\left(9x-3\right)
Rewrite 15x^{2}+4x-3 as \left(15x^{2}-5x\right)+\left(9x-3\right).
5x\left(3x-1\right)+3\left(3x-1\right)
Factor out 5x in the first and 3 in the second group.
\left(3x-1\right)\left(5x+3\right)
Factor out common term 3x-1 by using distributive property.
15x^{2}+4x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 15\left(-3\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 15\left(-3\right)}}{2\times 15}
Square 4.
x=\frac{-4±\sqrt{16-60\left(-3\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-4±\sqrt{16+180}}{2\times 15}
Multiply -60 times -3.
x=\frac{-4±\sqrt{196}}{2\times 15}
Add 16 to 180.
x=\frac{-4±14}{2\times 15}
Take the square root of 196.
x=\frac{-4±14}{30}
Multiply 2 times 15.
x=\frac{10}{30}
Now solve the equation x=\frac{-4±14}{30} when ± is plus. Add -4 to 14.
x=\frac{1}{3}
Reduce the fraction \frac{10}{30} to lowest terms by extracting and canceling out 10.
x=-\frac{18}{30}
Now solve the equation x=\frac{-4±14}{30} when ± is minus. Subtract 14 from -4.
x=-\frac{3}{5}
Reduce the fraction \frac{-18}{30} to lowest terms by extracting and canceling out 6.
15x^{2}+4x-3=15\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and -\frac{3}{5} for x_{2}.
15x^{2}+4x-3=15\left(x-\frac{1}{3}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}+4x-3=15\times \frac{3x-1}{3}\left(x+\frac{3}{5}\right)
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+4x-3=15\times \frac{3x-1}{3}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+4x-3=15\times \frac{\left(3x-1\right)\left(5x+3\right)}{3\times 5}
Multiply \frac{3x-1}{3} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15x^{2}+4x-3=15\times \frac{\left(3x-1\right)\left(5x+3\right)}{15}
Multiply 3 times 5.
15x^{2}+4x-3=\left(3x-1\right)\left(5x+3\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 +\frac{4}{15}x -\frac{1}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = -\frac{4}{15} rs = -\frac{1}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2}{15} - u s = -\frac{2}{15} + u
Two numbers r and s sum up to -\frac{4}{15} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4}{15} = -\frac{2}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2}{15} - u) (-\frac{2}{15} + u) = -\frac{1}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{5}
\frac{4}{225} - u^2 = -\frac{1}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{5}-\frac{4}{225} = -\frac{49}{225}
Simplify the expression by subtracting \frac{4}{225} on both sides
u^2 = \frac{49}{225} u = \pm\sqrt{\frac{49}{225}} = \pm \frac{7}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2}{15} - \frac{7}{15} = -0.600 s = -\frac{2}{15} + \frac{7}{15} = 0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}