Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+15
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-15=-15
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=3 b=-5
The solution is the pair that gives sum -2.
\left(-x^{2}+3x\right)+\left(-5x+15\right)
Rewrite -x^{2}-2x+15 as \left(-x^{2}+3x\right)+\left(-5x+15\right).
x\left(-x+3\right)+5\left(-x+3\right)
Factor out x in the first and 5 in the second group.
\left(-x+3\right)\left(x+5\right)
Factor out common term -x+3 by using distributive property.
-x^{2}-2x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2\left(-1\right)}
Multiply 4 times 15.
x=\frac{-\left(-2\right)±\sqrt{64}}{2\left(-1\right)}
Add 4 to 60.
x=\frac{-\left(-2\right)±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{2±8}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±8}{-2}
Multiply 2 times -1.
x=\frac{10}{-2}
Now solve the equation x=\frac{2±8}{-2} when ± is plus. Add 2 to 8.
x=-5
Divide 10 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{2±8}{-2} when ± is minus. Subtract 8 from 2.
x=3
Divide -6 by -2.
-x^{2}-2x+15=-\left(x-\left(-5\right)\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and 3 for x_{2}.
-x^{2}-2x+15=-\left(x+5\right)\left(x-3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.