Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-8x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{68}}{2\left(-1\right)}
Add 64 to 4.
x=\frac{-\left(-8\right)±2\sqrt{17}}{2\left(-1\right)}
Take the square root of 68.
x=\frac{8±2\sqrt{17}}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{17}+8}{-2}
Now solve the equation x=\frac{8±2\sqrt{17}}{-2} when ± is plus. Add 8 to 2\sqrt{17}.
x=-\left(\sqrt{17}+4\right)
Divide 8+2\sqrt{17} by -2.
x=\frac{8-2\sqrt{17}}{-2}
Now solve the equation x=\frac{8±2\sqrt{17}}{-2} when ± is minus. Subtract 2\sqrt{17} from 8.
x=\sqrt{17}-4
Divide 8-2\sqrt{17} by -2.
-x^{2}-8x+1=-\left(x-\left(-\left(\sqrt{17}+4\right)\right)\right)\left(x-\left(\sqrt{17}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(4+\sqrt{17}\right) for x_{1} and -4+\sqrt{17} for x_{2}.
x ^ 2 +8x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -8 rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
16 - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-16 = -17
Simplify the expression by subtracting 16 on both sides
u^2 = 17 u = \pm\sqrt{17} = \pm \sqrt{17}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - \sqrt{17} = -8.123 s = -4 + \sqrt{17} = 0.123
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.