Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9x^{2}+3x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square 3.
x=\frac{-3±\sqrt{9+36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-3±\sqrt{9+288}}{2\left(-9\right)}
Multiply 36 times 8.
x=\frac{-3±\sqrt{297}}{2\left(-9\right)}
Add 9 to 288.
x=\frac{-3±3\sqrt{33}}{2\left(-9\right)}
Take the square root of 297.
x=\frac{-3±3\sqrt{33}}{-18}
Multiply 2 times -9.
x=\frac{3\sqrt{33}-3}{-18}
Now solve the equation x=\frac{-3±3\sqrt{33}}{-18} when ± is plus. Add -3 to 3\sqrt{33}.
x=\frac{1-\sqrt{33}}{6}
Divide -3+3\sqrt{33} by -18.
x=\frac{-3\sqrt{33}-3}{-18}
Now solve the equation x=\frac{-3±3\sqrt{33}}{-18} when ± is minus. Subtract 3\sqrt{33} from -3.
x=\frac{\sqrt{33}+1}{6}
Divide -3-3\sqrt{33} by -18.
-9x^{2}+3x+8=-9\left(x-\frac{1-\sqrt{33}}{6}\right)\left(x-\frac{\sqrt{33}+1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{33}}{6} for x_{1} and \frac{1+\sqrt{33}}{6} for x_{2}.
x ^ 2 -\frac{1}{3}x -\frac{8}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{1}{3} rs = -\frac{8}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{6} - u s = \frac{1}{6} + u
Two numbers r and s sum up to \frac{1}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{1}{3} = \frac{1}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{6} - u) (\frac{1}{6} + u) = -\frac{8}{9}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{9}
\frac{1}{36} - u^2 = -\frac{8}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{9}-\frac{1}{36} = -\frac{11}{12}
Simplify the expression by subtracting \frac{1}{36} on both sides
u^2 = \frac{11}{12} u = \pm\sqrt{\frac{11}{12}} = \pm \frac{\sqrt{11}}{\sqrt{12}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{6} - \frac{\sqrt{11}}{\sqrt{12}} = -0.791 s = \frac{1}{6} + \frac{\sqrt{11}}{\sqrt{12}} = 1.124
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.