Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(-x^{2}-4x\right)
Factor out 4.
x\left(-x-4\right)
Consider -x^{2}-4x. Factor out x.
4x\left(-x-4\right)
Rewrite the complete factored expression.
-4x^{2}-16x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±16}{2\left(-4\right)}
Take the square root of \left(-16\right)^{2}.
x=\frac{16±16}{2\left(-4\right)}
The opposite of -16 is 16.
x=\frac{16±16}{-8}
Multiply 2 times -4.
x=\frac{32}{-8}
Now solve the equation x=\frac{16±16}{-8} when ± is plus. Add 16 to 16.
x=-4
Divide 32 by -8.
x=\frac{0}{-8}
Now solve the equation x=\frac{16±16}{-8} when ± is minus. Subtract 16 from 16.
x=0
Divide 0 by -8.
-4x^{2}-16x=-4\left(x-\left(-4\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and 0 for x_{2}.
-4x^{2}-16x=-4\left(x+4\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.