Factor
-2\left(x+1\right)\left(x+4\right)\left(x+6\right)
Evaluate
-2\left(x+1\right)\left(x+4\right)\left(x+6\right)
Graph
Share
Copied to clipboard
2\left(-x^{3}-11x^{2}-34x-24\right)
Factor out 2.
\left(x+6\right)\left(-x^{2}-5x-4\right)
Consider -x^{3}-11x^{2}-34x-24. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -24 and q divides the leading coefficient -1. One such root is -6. Factor the polynomial by dividing it by x+6.
a+b=-5 ab=-\left(-4\right)=4
Consider -x^{2}-5x-4. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
-1,-4 -2,-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4.
-1-4=-5 -2-2=-4
Calculate the sum for each pair.
a=-1 b=-4
The solution is the pair that gives sum -5.
\left(-x^{2}-x\right)+\left(-4x-4\right)
Rewrite -x^{2}-5x-4 as \left(-x^{2}-x\right)+\left(-4x-4\right).
x\left(-x-1\right)+4\left(-x-1\right)
Factor out x in the first and 4 in the second group.
\left(-x-1\right)\left(x+4\right)
Factor out common term -x-1 by using distributive property.
2\left(x+6\right)\left(-x-1\right)\left(x+4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}