Evaluate
-\frac{8\left(x-3\right)\left(x+1\right)}{3}
Expand
-\frac{8x^{2}}{3}+\frac{16x}{3}+8
Graph
Share
Copied to clipboard
-\frac{8}{3}\left(x^{2}-2x+1\right)+\frac{32}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{8}{3}x^{2}+\frac{16}{3}x-\frac{8}{3}+\frac{32}{3}
Use the distributive property to multiply -\frac{8}{3} by x^{2}-2x+1.
-\frac{8}{3}x^{2}+\frac{16}{3}x+8
Add -\frac{8}{3} and \frac{32}{3} to get 8.
-\frac{8}{3}\left(x^{2}-2x+1\right)+\frac{32}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{8}{3}x^{2}+\frac{16}{3}x-\frac{8}{3}+\frac{32}{3}
Use the distributive property to multiply -\frac{8}{3} by x^{2}-2x+1.
-\frac{8}{3}x^{2}+\frac{16}{3}x+8
Add -\frac{8}{3} and \frac{32}{3} to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}