Factor
\frac{\left(30-x\right)\left(8x+15\right)}{225}
Evaluate
-\frac{8x^{2}}{225}+x+2
Graph
Share
Copied to clipboard
\frac{-8x^{2}+225x+450}{225}
Factor out \frac{1}{225}.
a+b=225 ab=-8\times 450=-3600
Consider -8x^{2}+225x+450. Factor the expression by grouping. First, the expression needs to be rewritten as -8x^{2}+ax+bx+450. To find a and b, set up a system to be solved.
-1,3600 -2,1800 -3,1200 -4,900 -5,720 -6,600 -8,450 -9,400 -10,360 -12,300 -15,240 -16,225 -18,200 -20,180 -24,150 -25,144 -30,120 -36,100 -40,90 -45,80 -48,75 -50,72 -60,60
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -3600.
-1+3600=3599 -2+1800=1798 -3+1200=1197 -4+900=896 -5+720=715 -6+600=594 -8+450=442 -9+400=391 -10+360=350 -12+300=288 -15+240=225 -16+225=209 -18+200=182 -20+180=160 -24+150=126 -25+144=119 -30+120=90 -36+100=64 -40+90=50 -45+80=35 -48+75=27 -50+72=22 -60+60=0
Calculate the sum for each pair.
a=240 b=-15
The solution is the pair that gives sum 225.
\left(-8x^{2}+240x\right)+\left(-15x+450\right)
Rewrite -8x^{2}+225x+450 as \left(-8x^{2}+240x\right)+\left(-15x+450\right).
8x\left(-x+30\right)+15\left(-x+30\right)
Factor out 8x in the first and 15 in the second group.
\left(-x+30\right)\left(8x+15\right)
Factor out common term -x+30 by using distributive property.
\frac{\left(-x+30\right)\left(8x+15\right)}{225}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}