Evaluate
\frac{1}{6}-x
Expand
\frac{1}{6}-x
Graph
Share
Copied to clipboard
-\frac{1}{2}x-\frac{1}{2}\left(-2\right)+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Use the distributive property to multiply -\frac{1}{2} by x-2.
-\frac{1}{2}x+\frac{-\left(-2\right)}{2}+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Express -\frac{1}{2}\left(-2\right) as a single fraction.
-\frac{1}{2}x+\frac{2}{2}+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Multiply -1 and -2 to get 2.
-\frac{1}{2}x+1+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Divide 2 by 2 to get 1.
-\frac{1}{2}x+1+2\left(-\frac{1}{4}\right)x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Use the distributive property to multiply 2 by -\frac{1}{4}x-\frac{1}{3}.
-\frac{1}{2}x+1+\frac{2\left(-1\right)}{4}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Express 2\left(-\frac{1}{4}\right) as a single fraction.
-\frac{1}{2}x+1+\frac{-2}{4}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Multiply 2 and -1 to get -2.
-\frac{1}{2}x+1-\frac{1}{2}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
-\frac{1}{2}x+1-\frac{1}{2}x+\frac{2\left(-1\right)}{3}-\frac{1}{6}
Express 2\left(-\frac{1}{3}\right) as a single fraction.
-\frac{1}{2}x+1-\frac{1}{2}x+\frac{-2}{3}-\frac{1}{6}
Multiply 2 and -1 to get -2.
-\frac{1}{2}x+1-\frac{1}{2}x-\frac{2}{3}-\frac{1}{6}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-x+1-\frac{2}{3}-\frac{1}{6}
Combine -\frac{1}{2}x and -\frac{1}{2}x to get -x.
-x+\frac{3}{3}-\frac{2}{3}-\frac{1}{6}
Convert 1 to fraction \frac{3}{3}.
-x+\frac{3-2}{3}-\frac{1}{6}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-x+\frac{1}{3}-\frac{1}{6}
Subtract 2 from 3 to get 1.
-x+\frac{2}{6}-\frac{1}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
-x+\frac{2-1}{6}
Since \frac{2}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
-x+\frac{1}{6}
Subtract 1 from 2 to get 1.
-\frac{1}{2}x-\frac{1}{2}\left(-2\right)+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Use the distributive property to multiply -\frac{1}{2} by x-2.
-\frac{1}{2}x+\frac{-\left(-2\right)}{2}+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Express -\frac{1}{2}\left(-2\right) as a single fraction.
-\frac{1}{2}x+\frac{2}{2}+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Multiply -1 and -2 to get 2.
-\frac{1}{2}x+1+2\left(-\frac{1}{4}x-\frac{1}{3}\right)-\frac{1}{6}
Divide 2 by 2 to get 1.
-\frac{1}{2}x+1+2\left(-\frac{1}{4}\right)x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Use the distributive property to multiply 2 by -\frac{1}{4}x-\frac{1}{3}.
-\frac{1}{2}x+1+\frac{2\left(-1\right)}{4}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Express 2\left(-\frac{1}{4}\right) as a single fraction.
-\frac{1}{2}x+1+\frac{-2}{4}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Multiply 2 and -1 to get -2.
-\frac{1}{2}x+1-\frac{1}{2}x+2\left(-\frac{1}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
-\frac{1}{2}x+1-\frac{1}{2}x+\frac{2\left(-1\right)}{3}-\frac{1}{6}
Express 2\left(-\frac{1}{3}\right) as a single fraction.
-\frac{1}{2}x+1-\frac{1}{2}x+\frac{-2}{3}-\frac{1}{6}
Multiply 2 and -1 to get -2.
-\frac{1}{2}x+1-\frac{1}{2}x-\frac{2}{3}-\frac{1}{6}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-x+1-\frac{2}{3}-\frac{1}{6}
Combine -\frac{1}{2}x and -\frac{1}{2}x to get -x.
-x+\frac{3}{3}-\frac{2}{3}-\frac{1}{6}
Convert 1 to fraction \frac{3}{3}.
-x+\frac{3-2}{3}-\frac{1}{6}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-x+\frac{1}{3}-\frac{1}{6}
Subtract 2 from 3 to get 1.
-x+\frac{2}{6}-\frac{1}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
-x+\frac{2-1}{6}
Since \frac{2}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
-x+\frac{1}{6}
Subtract 1 from 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}