Solve for a
\left\{\begin{matrix}a=-\frac{x\left(x^{2}-bx-cx+bc-f\right)}{\left(b-x\right)\left(x-c\right)}\text{, }&x\neq c\text{ and }x\neq b\\a\in \mathrm{R}\text{, }&\left(f=0\text{ and }x=c\right)\text{ or }\left(x=0\text{ and }c=0\right)\text{ or }\left(x=0\text{ and }b=0\text{ and }c\neq 0\right)\text{ or }\left(f=0\text{ and }x=b\text{ and }b\neq c\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{x\left(x^{2}-ax-cx+ac-f\right)}{\left(a-x\right)\left(x-c\right)}\text{, }&x\neq c\text{ and }x\neq a\\b\in \mathrm{R}\text{, }&\left(f=0\text{ and }x=c\right)\text{ or }\left(x=0\text{ and }c=0\right)\text{ or }\left(x=0\text{ and }a=0\text{ and }c\neq 0\right)\text{ or }\left(f=0\text{ and }x=a\text{ and }a\neq c\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
fx=\left(x^{2}-xb-ax+ab\right)\left(x-c\right)
Use the distributive property to multiply x-a by x-b.
fx=x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc
Use the distributive property to multiply x^{2}-xb-ax+ab by x-c.
x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx
Swap sides so that all variable terms are on the left hand side.
-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}
Subtract x^{3} from both sides.
-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c
Add x^{2}c to both sides.
bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c+bx^{2}
Add bx^{2} to both sides.
-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c+bx^{2}-bxc
Subtract bxc from both sides.
-ax^{2}+abx+acx-abc=-x^{3}+bx^{2}+cx^{2}-bcx+fx
Reorder the terms.
\left(-x^{2}+bx+cx-bc\right)a=-x^{3}+bx^{2}+cx^{2}-bcx+fx
Combine all terms containing a.
\left(-x^{2}+bx+cx-bc\right)a=fx-bcx+cx^{2}+bx^{2}-x^{3}
The equation is in standard form.
\frac{\left(-x^{2}+bx+cx-bc\right)a}{-x^{2}+bx+cx-bc}=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{-x^{2}+bx+cx-bc}
Divide both sides by bx-bc-x^{2}+xc.
a=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{-x^{2}+bx+cx-bc}
Dividing by bx-bc-x^{2}+xc undoes the multiplication by bx-bc-x^{2}+xc.
a=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{\left(b-x\right)\left(x-c\right)}
Divide x\left(-x^{2}+bx+cx-bc+f\right) by bx-bc-x^{2}+xc.
fx=\left(x^{2}-xb-ax+ab\right)\left(x-c\right)
Use the distributive property to multiply x-a by x-b.
fx=x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc
Use the distributive property to multiply x^{2}-xb-ax+ab by x-c.
x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx
Swap sides so that all variable terms are on the left hand side.
-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}
Subtract x^{3} from both sides.
-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c
Add x^{2}c to both sides.
-bx^{2}+bxc+axc+abx-abc=fx-x^{3}+x^{2}c+ax^{2}
Add ax^{2} to both sides.
-bx^{2}+bxc+abx-abc=fx-x^{3}+x^{2}c+ax^{2}-axc
Subtract axc from both sides.
-bx^{2}+abx+bcx-abc=-x^{3}+ax^{2}+cx^{2}-acx+fx
Reorder the terms.
\left(-x^{2}+ax+cx-ac\right)b=-x^{3}+ax^{2}+cx^{2}-acx+fx
Combine all terms containing b.
\left(-x^{2}+ax+cx-ac\right)b=fx-acx+cx^{2}+ax^{2}-x^{3}
The equation is in standard form.
\frac{\left(-x^{2}+ax+cx-ac\right)b}{-x^{2}+ax+cx-ac}=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{-x^{2}+ax+cx-ac}
Divide both sides by ax-ac-x^{2}+xc.
b=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{-x^{2}+ax+cx-ac}
Dividing by ax-ac-x^{2}+xc undoes the multiplication by ax-ac-x^{2}+xc.
b=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{\left(a-x\right)\left(x-c\right)}
Divide x\left(-x^{2}+ax+cx-ac+f\right) by ax-ac-x^{2}+xc.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}