Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

fx=\left(x^{2}-xb-ax+ab\right)\left(x-c\right)
Use the distributive property to multiply x-a by x-b.
fx=x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc
Use the distributive property to multiply x^{2}-xb-ax+ab by x-c.
x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx
Swap sides so that all variable terms are on the left hand side.
-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}
Subtract x^{3} from both sides.
-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c
Add x^{2}c to both sides.
bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c+bx^{2}
Add bx^{2} to both sides.
-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c+bx^{2}-bxc
Subtract bxc from both sides.
-ax^{2}+abx+acx-abc=-x^{3}+bx^{2}+cx^{2}-bcx+fx
Reorder the terms.
\left(-x^{2}+bx+cx-bc\right)a=-x^{3}+bx^{2}+cx^{2}-bcx+fx
Combine all terms containing a.
\left(-x^{2}+bx+cx-bc\right)a=fx-bcx+cx^{2}+bx^{2}-x^{3}
The equation is in standard form.
\frac{\left(-x^{2}+bx+cx-bc\right)a}{-x^{2}+bx+cx-bc}=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{-x^{2}+bx+cx-bc}
Divide both sides by bx-bc-x^{2}+xc.
a=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{-x^{2}+bx+cx-bc}
Dividing by bx-bc-x^{2}+xc undoes the multiplication by bx-bc-x^{2}+xc.
a=\frac{x\left(f-bc+cx+bx-x^{2}\right)}{\left(b-x\right)\left(x-c\right)}
Divide x\left(-x^{2}+bx+cx-bc+f\right) by bx-bc-x^{2}+xc.
fx=\left(x^{2}-xb-ax+ab\right)\left(x-c\right)
Use the distributive property to multiply x-a by x-b.
fx=x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc
Use the distributive property to multiply x^{2}-xb-ax+ab by x-c.
x^{3}-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx
Swap sides so that all variable terms are on the left hand side.
-x^{2}c-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}
Subtract x^{3} from both sides.
-bx^{2}+bxc-ax^{2}+axc+abx-abc=fx-x^{3}+x^{2}c
Add x^{2}c to both sides.
-bx^{2}+bxc+axc+abx-abc=fx-x^{3}+x^{2}c+ax^{2}
Add ax^{2} to both sides.
-bx^{2}+bxc+abx-abc=fx-x^{3}+x^{2}c+ax^{2}-axc
Subtract axc from both sides.
-bx^{2}+abx+bcx-abc=-x^{3}+ax^{2}+cx^{2}-acx+fx
Reorder the terms.
\left(-x^{2}+ax+cx-ac\right)b=-x^{3}+ax^{2}+cx^{2}-acx+fx
Combine all terms containing b.
\left(-x^{2}+ax+cx-ac\right)b=fx-acx+cx^{2}+ax^{2}-x^{3}
The equation is in standard form.
\frac{\left(-x^{2}+ax+cx-ac\right)b}{-x^{2}+ax+cx-ac}=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{-x^{2}+ax+cx-ac}
Divide both sides by ax-ac-x^{2}+xc.
b=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{-x^{2}+ax+cx-ac}
Dividing by ax-ac-x^{2}+xc undoes the multiplication by ax-ac-x^{2}+xc.
b=\frac{x\left(f-ac+cx+ax-x^{2}\right)}{\left(a-x\right)\left(x-c\right)}
Divide x\left(-x^{2}+ax+cx-ac+f\right) by ax-ac-x^{2}+xc.