Evaluate
x-1
Expand
x-1
Graph
Share
Copied to clipboard
\frac{\frac{x\left(1-x\right)}{1-x}-\frac{1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
\frac{\frac{x\left(1-x\right)-1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Since \frac{x\left(1-x\right)}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-x^{2}-1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Do the multiplications in x\left(1-x\right)-1.
\frac{\left(x-x^{2}-1\right)\left(x^{2}-2x+1\right)}{\left(1-x\right)\left(x^{2}-x+1\right)}
Divide \frac{x-x^{2}-1}{1-x} by \frac{x^{2}-x+1}{x^{2}-2x+1} by multiplying \frac{x-x^{2}-1}{1-x} by the reciprocal of \frac{x^{2}-x+1}{x^{2}-2x+1}.
\frac{-\left(x^{2}-2x+1\right)\left(x^{2}-x+1\right)}{\left(-x+1\right)\left(x^{2}-x+1\right)}
Extract the negative sign in x-x^{2}-1.
\frac{-\left(x^{2}-2x+1\right)}{-x+1}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{-x^{2}+2x-1}{-x+1}
To find the opposite of x^{2}-2x+1, find the opposite of each term.
\frac{\left(x-1\right)\left(-x+1\right)}{-x+1}
Factor the expressions that are not already factored.
\frac{-\left(-x+1\right)\left(-x+1\right)}{-x+1}
Extract the negative sign in -1+x.
-\left(-x+1\right)
Cancel out -x+1 in both numerator and denominator.
x-1
Expand the expression.
\frac{\frac{x\left(1-x\right)}{1-x}-\frac{1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
\frac{\frac{x\left(1-x\right)-1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Since \frac{x\left(1-x\right)}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-x^{2}-1}{1-x}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Do the multiplications in x\left(1-x\right)-1.
\frac{\left(x-x^{2}-1\right)\left(x^{2}-2x+1\right)}{\left(1-x\right)\left(x^{2}-x+1\right)}
Divide \frac{x-x^{2}-1}{1-x} by \frac{x^{2}-x+1}{x^{2}-2x+1} by multiplying \frac{x-x^{2}-1}{1-x} by the reciprocal of \frac{x^{2}-x+1}{x^{2}-2x+1}.
\frac{-\left(x^{2}-2x+1\right)\left(x^{2}-x+1\right)}{\left(-x+1\right)\left(x^{2}-x+1\right)}
Extract the negative sign in x-x^{2}-1.
\frac{-\left(x^{2}-2x+1\right)}{-x+1}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{-x^{2}+2x-1}{-x+1}
To find the opposite of x^{2}-2x+1, find the opposite of each term.
\frac{\left(x-1\right)\left(-x+1\right)}{-x+1}
Factor the expressions that are not already factored.
\frac{-\left(-x+1\right)\left(-x+1\right)}{-x+1}
Extract the negative sign in -1+x.
-\left(-x+1\right)
Cancel out -x+1 in both numerator and denominator.
x-1
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}