Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-27\left(x^{-3}\right)^{3}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-3x^{-3}+3x^{5}\right)^{3}.
\left(-27x^{-9}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\left(-27x^{-9}+81x^{-6}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(-27x^{-9}+81x^{-1}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\left(-27x^{-9}+81x^{-1}-81x^{-3}x^{10}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and 10 to get 7.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(\left(x^{2}\right)^{2}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x^{3}\right)^{2}.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+\left(x^{3}\right)^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-27x^{-9}x^{4}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
Use the distributive property to multiply -27x^{-9}+81x^{-1}-81x^{7}+27x^{15} by x^{4}-2x^{5}+x^{6}.
-27x^{-5}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 4 to get -5.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 6 to get -3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{5}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 6 to get 5.
\left(-27\left(x^{-3}\right)^{3}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-3x^{-3}+3x^{5}\right)^{3}.
\left(-27x^{-9}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\left(-27x^{-9}+81x^{-6}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(-27x^{-9}+81x^{-1}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\left(-27x^{-9}+81x^{-1}-81x^{-3}x^{10}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and 10 to get 7.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(\left(x^{2}\right)^{2}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x^{3}\right)^{2}.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+\left(x^{3}\right)^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-27x^{-9}x^{4}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
Use the distributive property to multiply -27x^{-9}+81x^{-1}-81x^{7}+27x^{15} by x^{4}-2x^{5}+x^{6}.
-27x^{-5}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 4 to get -5.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 6 to get -3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{5}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 6 to get 5.