Evaluate
\frac{27\left(1-x\right)^{2}\left(x^{8}-1\right)^{3}}{x^{5}}
Expand
\frac{27\left(x^{26}-2x^{25}+x^{24}-3x^{18}+6x^{17}-3x^{16}+3x^{10}-6x^{9}+3x^{8}-x^{2}+2x-1\right)}{x^{5}}
Graph
Share
Copied to clipboard
\left(-27\left(x^{-3}\right)^{3}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-3x^{-3}+3x^{5}\right)^{3}.
\left(-27x^{-9}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\left(-27x^{-9}+81x^{-6}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(-27x^{-9}+81x^{-1}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\left(-27x^{-9}+81x^{-1}-81x^{-3}x^{10}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and 10 to get 7.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(\left(x^{2}\right)^{2}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x^{3}\right)^{2}.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+\left(x^{3}\right)^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-27x^{-9}x^{4}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
Use the distributive property to multiply -27x^{-9}+81x^{-1}-81x^{7}+27x^{15} by x^{4}-2x^{5}+x^{6}.
-27x^{-5}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 4 to get -5.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 6 to get -3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{5}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 6 to get 5.
\left(-27\left(x^{-3}\right)^{3}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(-3x^{-3}+3x^{5}\right)^{3}.
\left(-27x^{-9}+81\left(x^{-3}\right)^{2}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\left(-27x^{-9}+81x^{-6}x^{5}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(-27x^{-9}+81x^{-1}-81x^{-3}\left(x^{5}\right)^{2}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\left(-27x^{-9}+81x^{-1}-81x^{-3}x^{10}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27\left(x^{5}\right)^{3}\right)\left(x^{2}-x^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and 10 to get 7.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{2}-x^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(\left(x^{2}\right)^{2}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x^{3}\right)^{2}.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{2}x^{3}+\left(x^{3}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+\left(x^{3}\right)^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\left(-27x^{-9}+81x^{-1}-81x^{7}+27x^{15}\right)\left(x^{4}-2x^{5}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-27x^{-9}x^{4}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
Use the distributive property to multiply -27x^{-9}+81x^{-1}-81x^{7}+27x^{15} by x^{4}-2x^{5}+x^{6}.
-27x^{-5}+54x^{-4}-27x^{-9}x^{6}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 4 to get -5.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{-1}x^{4}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -9 and 6 to get -3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{-1}x^{6}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
-27x^{-5}+54x^{-4}-27x^{-3}+81x^{3}-162x^{4}+81x^{5}-81x^{11}+162x^{12}-81x^{13}+27x^{19}-54x^{20}+27x^{21}
To multiply powers of the same base, add their exponents. Add -1 and 6 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}