Evaluate
\frac{2x\left(x^{4}+x-1\right)}{1-x^{4}}
Factor
\frac{2x\left(x^{4}+x-1\right)}{1-x^{4}}
Graph
Share
Copied to clipboard
\frac{x^{2}}{1+x^{2}}-\frac{-x^{2}}{1-x^{2}}-2x
Express \frac{x^{2}}{1+x^{2}}\times 1 as a single fraction.
\frac{x^{2}}{1+x^{2}}-\frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}-2x
Factor 1-x^{2}.
\frac{x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-\frac{\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x^{2} and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right). Multiply \frac{x^{2}}{1+x^{2}} times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}. Multiply \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} times \frac{x^{2}+1}{x^{2}+1}.
\frac{x^{2}\left(x-1\right)\left(-x-1\right)-\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Since \frac{x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} and \frac{\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}-x^{3}+x^{3}+x^{2}+x^{4}+x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Do the multiplications in x^{2}\left(x-1\right)\left(-x-1\right)-\left(-x^{2}\right)\left(x^{2}+1\right).
\frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Combine like terms in -x^{4}-x^{3}+x^{3}+x^{2}+x^{4}+x^{2}.
\frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}+\frac{-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}.
\frac{2x^{2}-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Since \frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} and \frac{-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x^{5}+2x^{3}+2x^{4}+2x^{2}-2x^{4}-2x^{2}-2x^{3}-2x}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Do the multiplications in 2x^{2}-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right).
\frac{2x^{2}+2x^{5}-2x}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Combine like terms in 2x^{2}+2x^{5}+2x^{3}+2x^{4}+2x^{2}-2x^{4}-2x^{2}-2x^{3}-2x.
\frac{2x^{2}+2x^{5}-2x}{-x^{4}+1}
Expand \left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}