Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}}{1+x^{2}}-\frac{-x^{2}}{1-x^{2}}-2x
Express \frac{x^{2}}{1+x^{2}}\times 1 as a single fraction.
\frac{x^{2}}{1+x^{2}}-\frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}-2x
Factor 1-x^{2}.
\frac{x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-\frac{\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x^{2} and \left(x-1\right)\left(-x-1\right) is \left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right). Multiply \frac{x^{2}}{1+x^{2}} times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}. Multiply \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} times \frac{x^{2}+1}{x^{2}+1}.
\frac{x^{2}\left(x-1\right)\left(-x-1\right)-\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Since \frac{x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} and \frac{\left(-x^{2}\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}-x^{3}+x^{3}+x^{2}+x^{4}+x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Do the multiplications in x^{2}\left(x-1\right)\left(-x-1\right)-\left(-x^{2}\right)\left(x^{2}+1\right).
\frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}-2x
Combine like terms in -x^{4}-x^{3}+x^{3}+x^{2}+x^{4}+x^{2}.
\frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}+\frac{-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}.
\frac{2x^{2}-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Since \frac{2x^{2}}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} and \frac{-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x^{5}+2x^{3}+2x^{4}+2x^{2}-2x^{4}-2x^{2}-2x^{3}-2x}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Do the multiplications in 2x^{2}-2x\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right).
\frac{2x^{2}+2x^{5}-2x}{\left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right)}
Combine like terms in 2x^{2}+2x^{5}+2x^{3}+2x^{4}+2x^{2}-2x^{4}-2x^{2}-2x^{3}-2x.
\frac{2x^{2}+2x^{5}-2x}{-x^{4}+1}
Expand \left(x-1\right)\left(-x-1\right)\left(x^{2}+1\right).