Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+3 in both numerator and denominator.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x+1}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Combine like terms in x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Multiply \frac{3x+3}{\left(x-1\right)\left(x+2\right)} times \frac{x+2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{3}{x-1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+3 in both numerator and denominator.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x+1}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Combine like terms in x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Multiply \frac{3x+3}{\left(x-1\right)\left(x+2\right)} times \frac{x+2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{3}{x-1}
Cancel out x+1 in both numerator and denominator.