Evaluate
\frac{3}{x-1}
Expand
\frac{3}{x-1}
Graph
Share
Copied to clipboard
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+3 in both numerator and denominator.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x+1}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Combine like terms in x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Multiply \frac{3x+3}{\left(x-1\right)\left(x+2\right)} times \frac{x+2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{3}{x-1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+3 in both numerator and denominator.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x+1}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Combine like terms in x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Multiply \frac{3x+3}{\left(x-1\right)\left(x+2\right)} times \frac{x+2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{3}{x-1}
Cancel out x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}