Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int t^{3}+2t^{2}+1\mathrm{d}t
Evaluate the indefinite integral first.
\int t^{3}\mathrm{d}t+\int 2t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Integrate the sum term by term.
\int t^{3}\mathrm{d}t+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{4}}{4}+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 2 times \frac{t^{3}}{3}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+t
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{x^{4}}{4}+\frac{2}{3}x^{3}+x-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}+0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Simplify.