Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int e^{t}+t\mathrm{d}t
Evaluate the indefinite integral first.
\int e^{t}\mathrm{d}t+\int t\mathrm{d}t
Integrate the sum term by term.
e^{t}+\int t\mathrm{d}t
Use \int e^{t}\mathrm{d}t=e^{t} from the table of common integrals to obtain the result.
e^{t}+\frac{t^{2}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}.
e^{2}+\frac{2^{2}}{2}-\left(e^{\ln(x)\ln(e)^{-1}}+\frac{1}{2}\left(\ln(x)\ln(e)^{-1}\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
e^{2}+2-x-\frac{\ln(x)^{2}}{2}
Simplify.