Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{3}\left(x^{2}+1\right)}{x^{2}+1}-\frac{1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\frac{x^{3}\left(x^{2}+1\right)-1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
Since \frac{x^{3}\left(x^{2}+1\right)}{x^{2}+1} and \frac{1}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
Do the multiplications in x^{3}\left(x^{2}+1\right)-1.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{4}\left(x^{2}+1\right)+1}{x^{2}+1}}
Since \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} and \frac{1}{x^{2}+1} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{6}+x^{4}+1}{x^{2}+1}}
Do the multiplications in x^{4}\left(x^{2}+1\right)+1.
\frac{\left(x^{5}+x^{3}-1\right)\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{6}+x^{4}+1\right)}
Divide \frac{x^{5}+x^{3}-1}{x^{2}+1} by \frac{x^{6}+x^{4}+1}{x^{2}+1} by multiplying \frac{x^{5}+x^{3}-1}{x^{2}+1} by the reciprocal of \frac{x^{6}+x^{4}+1}{x^{2}+1}.
\frac{x^{5}+x^{3}-1}{x^{6}+x^{4}+1}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{\frac{x^{3}\left(x^{2}+1\right)}{x^{2}+1}-\frac{1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\frac{x^{3}\left(x^{2}+1\right)-1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
Since \frac{x^{3}\left(x^{2}+1\right)}{x^{2}+1} and \frac{1}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{x^{4}+\frac{1}{x^{2}+1}}
Do the multiplications in x^{3}\left(x^{2}+1\right)-1.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{4}\left(x^{2}+1\right)+1}{x^{2}+1}}
Since \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} and \frac{1}{x^{2}+1} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{5}+x^{3}-1}{x^{2}+1}}{\frac{x^{6}+x^{4}+1}{x^{2}+1}}
Do the multiplications in x^{4}\left(x^{2}+1\right)+1.
\frac{\left(x^{5}+x^{3}-1\right)\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{6}+x^{4}+1\right)}
Divide \frac{x^{5}+x^{3}-1}{x^{2}+1} by \frac{x^{6}+x^{4}+1}{x^{2}+1} by multiplying \frac{x^{5}+x^{3}-1}{x^{2}+1} by the reciprocal of \frac{x^{6}+x^{4}+1}{x^{2}+1}.
\frac{x^{5}+x^{3}-1}{x^{6}+x^{4}+1}
Cancel out x^{2}+1 in both numerator and denominator.