Evaluate
\frac{\left(x-6\right)\left(x-2\right)}{4}
Factor
\frac{\left(x-6\right)\left(x-2\right)}{4}
Graph
Share
Copied to clipboard
\frac{x^{2}}{4}+\frac{4\left(-2x+3\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+3 times \frac{4}{4}.
\frac{x^{2}+4\left(-2x+3\right)}{4}
Since \frac{x^{2}}{4} and \frac{4\left(-2x+3\right)}{4} have the same denominator, add them by adding their numerators.
\frac{x^{2}-8x+12}{4}
Do the multiplications in x^{2}+4\left(-2x+3\right).
\frac{x^{2}-8x+12}{4}
Factor out \frac{1}{4}.
a+b=-8 ab=1\times 12=12
Consider x^{2}-8x+12. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(x^{2}-6x\right)+\left(-2x+12\right)
Rewrite x^{2}-8x+12 as \left(x^{2}-6x\right)+\left(-2x+12\right).
x\left(x-6\right)-2\left(x-6\right)
Factor out x in the first and -2 in the second group.
\left(x-6\right)\left(x-2\right)
Factor out common term x-6 by using distributive property.
\frac{\left(x-6\right)\left(x-2\right)}{4}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}