Solve for h
h=-\frac{-\sqrt{x-10}x+x-2\sqrt{x-10}+3}{x\left(x+2\right)}
x\geq 10
Graph
Share
Copied to clipboard
x+3+hx\left(x+2\right)=\left(x+2\right)\sqrt{x-10}
Multiply both sides of the equation by x+2.
x+3+hx^{2}+2hx=\left(x+2\right)\sqrt{x-10}
Use the distributive property to multiply hx by x+2.
x+3+hx^{2}+2hx=x\sqrt{x-10}+2\sqrt{x-10}
Use the distributive property to multiply x+2 by \sqrt{x-10}.
3+hx^{2}+2hx=x\sqrt{x-10}+2\sqrt{x-10}-x
Subtract x from both sides.
hx^{2}+2hx=x\sqrt{x-10}+2\sqrt{x-10}-x-3
Subtract 3 from both sides.
\left(x^{2}+2x\right)h=x\sqrt{x-10}+2\sqrt{x-10}-x-3
Combine all terms containing h.
\left(x^{2}+2x\right)h=\sqrt{x-10}x-x+2\sqrt{x-10}-3
The equation is in standard form.
\frac{\left(x^{2}+2x\right)h}{x^{2}+2x}=\frac{\sqrt{x-10}x-x+2\sqrt{x-10}-3}{x^{2}+2x}
Divide both sides by x^{2}+2x.
h=\frac{\sqrt{x-10}x-x+2\sqrt{x-10}-3}{x^{2}+2x}
Dividing by x^{2}+2x undoes the multiplication by x^{2}+2x.
h=\frac{\sqrt{x-10}x-x+2\sqrt{x-10}-3}{x\left(x+2\right)}
Divide x\sqrt{x-10}+2\sqrt{x-10}-x-3 by x^{2}+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}