Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{3}+\frac{1}{3}\left(\frac{\left(3x-1\right)\left(3x-1\right)}{3x-1}+\frac{4}{3x-1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x-1 times \frac{3x-1}{3x-1}.
\frac{5}{3}+\frac{1}{3}\times \frac{\left(3x-1\right)\left(3x-1\right)+4}{3x-1}
Since \frac{\left(3x-1\right)\left(3x-1\right)}{3x-1} and \frac{4}{3x-1} have the same denominator, add them by adding their numerators.
\frac{5}{3}+\frac{1}{3}\times \frac{9x^{2}-3x-3x+1+4}{3x-1}
Do the multiplications in \left(3x-1\right)\left(3x-1\right)+4.
\frac{5}{3}+\frac{1}{3}\times \frac{9x^{2}-6x+5}{3x-1}
Combine like terms in 9x^{2}-3x-3x+1+4.
\frac{5}{3}+\frac{9x^{2}-6x+5}{3\left(3x-1\right)}
Multiply \frac{1}{3} times \frac{9x^{2}-6x+5}{3x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(3x-1\right)}{3\left(3x-1\right)}+\frac{9x^{2}-6x+5}{3\left(3x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3\left(3x-1\right) is 3\left(3x-1\right). Multiply \frac{5}{3} times \frac{3x-1}{3x-1}.
\frac{5\left(3x-1\right)+9x^{2}-6x+5}{3\left(3x-1\right)}
Since \frac{5\left(3x-1\right)}{3\left(3x-1\right)} and \frac{9x^{2}-6x+5}{3\left(3x-1\right)} have the same denominator, add them by adding their numerators.
\frac{15x-5+9x^{2}-6x+5}{3\left(3x-1\right)}
Do the multiplications in 5\left(3x-1\right)+9x^{2}-6x+5.
\frac{9x+9x^{2}}{3\left(3x-1\right)}
Combine like terms in 15x-5+9x^{2}-6x+5.
\frac{9x\left(x+1\right)}{3\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{9x+9x^{2}}{3\left(3x-1\right)}.
\frac{3x\left(x+1\right)}{3x-1}
Cancel out 3 in both numerator and denominator.
\frac{3x^{2}+3x}{3x-1}
Use the distributive property to multiply 3x by x+1.
\frac{5}{3}+\frac{1}{3}\left(\frac{\left(3x-1\right)\left(3x-1\right)}{3x-1}+\frac{4}{3x-1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x-1 times \frac{3x-1}{3x-1}.
\frac{5}{3}+\frac{1}{3}\times \frac{\left(3x-1\right)\left(3x-1\right)+4}{3x-1}
Since \frac{\left(3x-1\right)\left(3x-1\right)}{3x-1} and \frac{4}{3x-1} have the same denominator, add them by adding their numerators.
\frac{5}{3}+\frac{1}{3}\times \frac{9x^{2}-3x-3x+1+4}{3x-1}
Do the multiplications in \left(3x-1\right)\left(3x-1\right)+4.
\frac{5}{3}+\frac{1}{3}\times \frac{9x^{2}-6x+5}{3x-1}
Combine like terms in 9x^{2}-3x-3x+1+4.
\frac{5}{3}+\frac{9x^{2}-6x+5}{3\left(3x-1\right)}
Multiply \frac{1}{3} times \frac{9x^{2}-6x+5}{3x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(3x-1\right)}{3\left(3x-1\right)}+\frac{9x^{2}-6x+5}{3\left(3x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3\left(3x-1\right) is 3\left(3x-1\right). Multiply \frac{5}{3} times \frac{3x-1}{3x-1}.
\frac{5\left(3x-1\right)+9x^{2}-6x+5}{3\left(3x-1\right)}
Since \frac{5\left(3x-1\right)}{3\left(3x-1\right)} and \frac{9x^{2}-6x+5}{3\left(3x-1\right)} have the same denominator, add them by adding their numerators.
\frac{15x-5+9x^{2}-6x+5}{3\left(3x-1\right)}
Do the multiplications in 5\left(3x-1\right)+9x^{2}-6x+5.
\frac{9x+9x^{2}}{3\left(3x-1\right)}
Combine like terms in 15x-5+9x^{2}-6x+5.
\frac{9x\left(x+1\right)}{3\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{9x+9x^{2}}{3\left(3x-1\right)}.
\frac{3x\left(x+1\right)}{3x-1}
Cancel out 3 in both numerator and denominator.
\frac{3x^{2}+3x}{3x-1}
Use the distributive property to multiply 3x by x+1.