Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5\left(\sqrt{3}+x\right)}{\left(\sqrt{3}-x\right)\left(\sqrt{3}+x\right)}
Rationalize the denominator of \frac{5}{\sqrt{3}-x} by multiplying numerator and denominator by \sqrt{3}+x.
\frac{5\left(\sqrt{3}+x\right)}{\left(\sqrt{3}\right)^{2}-x^{2}}
Consider \left(\sqrt{3}-x\right)\left(\sqrt{3}+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+x\right)}{3-x^{2}}
The square of \sqrt{3} is 3.
\frac{5\sqrt{3}+5x}{3-x^{2}}
Use the distributive property to multiply 5 by \sqrt{3}+x.