Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{\left(4x+3\right)\left(x\in R\right)}{x\left(x^{2}+1\right)}\text{, }&x\neq -i\text{ and }x\neq i\text{ and }x\neq 0\\f\in \mathrm{C}\text{, }&\left(0\in R\right)=0\text{ and }x=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{\left(4x+3\right)\left(x\in R\right)}{x\left(x^{2}+1\right)}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&\left(0\in R\right)=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fx\left(x-i\right)\left(x+i\right)=\left(4x+3\right)\left(x\in R\right)
Multiply both sides of the equation by \left(x-i\right)\left(x+i\right).
\left(fx^{2}-ifx\right)\left(x+i\right)=\left(4x+3\right)\left(x\in R\right)
Use the distributive property to multiply fx by x-i.
fx^{3}+xf=\left(4x+3\right)\left(x\in R\right)
Use the distributive property to multiply fx^{2}-ifx by x+i and combine like terms.
fx^{3}+xf=4x\left(x\in R\right)+3\left(x\in R\right)
Use the distributive property to multiply 4x+3 by x\in R.
\left(x^{3}+x\right)f=4x\left(x\in R\right)+3\left(x\in R\right)
Combine all terms containing f.
\frac{\left(x^{3}+x\right)f}{x^{3}+x}=\frac{\left(4x+3\right)\left(x\in R\right)}{x^{3}+x}
Divide both sides by x^{3}+x.
f=\frac{\left(4x+3\right)\left(x\in R\right)}{x^{3}+x}
Dividing by x^{3}+x undoes the multiplication by x^{3}+x.
f=\frac{\left(4x+3\right)\left(x\in R\right)}{x\left(x^{2}+1\right)}
Divide \left(3+4x\right)\left(x\in R\right) by x^{3}+x.
fx\left(x^{2}+1\right)=\left(4x+3\right)\left(x\in R\right)
Multiply both sides of the equation by x^{2}+1.
fx^{3}+fx=\left(4x+3\right)\left(x\in R\right)
Use the distributive property to multiply fx by x^{2}+1.
fx^{3}+fx=4x\left(x\in R\right)+3\left(x\in R\right)
Use the distributive property to multiply 4x+3 by x\in R.
\left(x^{3}+x\right)f=4x\left(x\in R\right)+3\left(x\in R\right)
Combine all terms containing f.
\frac{\left(x^{3}+x\right)f}{x^{3}+x}=\frac{\left(4x+3\right)\left(x\in R\right)}{x^{3}+x}
Divide both sides by x^{3}+x.
f=\frac{\left(4x+3\right)\left(x\in R\right)}{x^{3}+x}
Dividing by x^{3}+x undoes the multiplication by x^{3}+x.
f=\frac{\left(4x+3\right)\left(x\in R\right)}{x\left(x^{2}+1\right)}
Divide \left(3+4x\right)\left(x\in R\right) by x^{3}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}