Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\sqrt{5}+3x}{\left(\sqrt{5}-3x\right)\left(\sqrt{5}+3x\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-3x} by multiplying numerator and denominator by \sqrt{5}+3x.
\frac{\sqrt{5}+3x}{\left(\sqrt{5}\right)^{2}-\left(-3x\right)^{2}}
Consider \left(\sqrt{5}-3x\right)\left(\sqrt{5}+3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}+3x}{5-\left(-3x\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}+3x}{5-\left(-3\right)^{2}x^{2}}
Expand \left(-3x\right)^{2}.
\frac{\sqrt{5}+3x}{5-9x^{2}}
Calculate -3 to the power of 2 and get 9.