Solve for f
f=-\frac{3x+4}{x\left(x-2\right)}
x\neq 2\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4f^{2}-28f+9}+2f-3}{2f}\text{; }x=\frac{-\sqrt{4f^{2}-28f+9}+2f-3}{2f}\text{, }&f\neq 0\\x=-\frac{4}{3}\text{, }&f=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{4f^{2}-28f+9}+2f-3}{2f}\text{; }x=\frac{-\sqrt{4f^{2}-28f+9}+2f-3}{2f}\text{, }&\left(f\neq 0\text{ and }f\leq \frac{7}{2}-\sqrt{10}\right)\text{ or }f\geq \sqrt{10}+\frac{7}{2}\\x=-\frac{4}{3}\text{, }&f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fx\left(x-2\right)=-3x-4
Multiply both sides of the equation by x-2.
fx^{2}-2fx=-3x-4
Use the distributive property to multiply fx by x-2.
\left(x^{2}-2x\right)f=-3x-4
Combine all terms containing f.
\frac{\left(x^{2}-2x\right)f}{x^{2}-2x}=\frac{-3x-4}{x^{2}-2x}
Divide both sides by x^{2}-2x.
f=\frac{-3x-4}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
f=-\frac{3x+4}{x\left(x-2\right)}
Divide -3x-4 by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}