Solve for f
f=\frac{\sin(x)+chx}{x\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for c
\left\{\begin{matrix}c=\frac{\left(fx-1\right)\sin(x)}{hx}\text{, }&h\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\c\in \mathrm{R}\text{, }&f=\frac{1}{x}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }h=0\end{matrix}\right.
Graph
Quiz
Trigonometry
5 problems similar to:
f ( x ) = \frac { \sin x + \operatorname { ch } x } { \sin x }
Share
Copied to clipboard
xf=\frac{\sin(x)+chx}{\sin(x)}
The equation is in standard form.
\frac{xf}{x}=\frac{\sin(x)+chx}{\sin(x)x}
Divide both sides by x.
f=\frac{\sin(x)+chx}{\sin(x)x}
Dividing by x undoes the multiplication by x.
f=\frac{ch}{\sin(x)}+\frac{1}{x}
Divide \frac{\sin(x)+chx}{\sin(x)} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}