Evaluate
\frac{48}{49}-\frac{1}{a}
Expand
\frac{48}{49}-\frac{1}{a}
Share
Copied to clipboard
\frac{\frac{-28}{4a}-\frac{1}{7}+\frac{42}{6}}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{-28}{4a}-\frac{1}{7}+7}{7}
Divide 42 by 6 to get 7.
\frac{\frac{-28}{4a}-\frac{1}{7}+\frac{49}{7}}{7}
Convert 7 to fraction \frac{49}{7}.
\frac{\frac{-28}{4a}+\frac{-1+49}{7}}{7}
Since -\frac{1}{7} and \frac{49}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{-28}{4a}+\frac{48}{7}}{7}
Add -1 and 49 to get 48.
\frac{\frac{-28\times 7}{28a}+\frac{48\times 4a}{28a}}{7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a and 7 is 28a. Multiply \frac{-28}{4a} times \frac{7}{7}. Multiply \frac{48}{7} times \frac{4a}{4a}.
\frac{\frac{-28\times 7+48\times 4a}{28a}}{7}
Since \frac{-28\times 7}{28a} and \frac{48\times 4a}{28a} have the same denominator, add them by adding their numerators.
\frac{\frac{-196+192a}{28a}}{7}
Do the multiplications in -28\times 7+48\times 4a.
\frac{\frac{4\left(48a-49\right)}{28a}}{7}
Factor the expressions that are not already factored in \frac{-196+192a}{28a}.
\frac{\frac{48a-49}{7a}}{7}
Cancel out 4 in both numerator and denominator.
\frac{48a-49}{7a\times 7}
Express \frac{\frac{48a-49}{7a}}{7} as a single fraction.
\frac{48a-49}{49a}
Multiply 7 and 7 to get 49.
\frac{\frac{-28}{4a}-\frac{1}{7}+\frac{42}{6}}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{-28}{4a}-\frac{1}{7}+7}{7}
Divide 42 by 6 to get 7.
\frac{\frac{-28}{4a}-\frac{1}{7}+\frac{49}{7}}{7}
Convert 7 to fraction \frac{49}{7}.
\frac{\frac{-28}{4a}+\frac{-1+49}{7}}{7}
Since -\frac{1}{7} and \frac{49}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{-28}{4a}+\frac{48}{7}}{7}
Add -1 and 49 to get 48.
\frac{\frac{-28\times 7}{28a}+\frac{48\times 4a}{28a}}{7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a and 7 is 28a. Multiply \frac{-28}{4a} times \frac{7}{7}. Multiply \frac{48}{7} times \frac{4a}{4a}.
\frac{\frac{-28\times 7+48\times 4a}{28a}}{7}
Since \frac{-28\times 7}{28a} and \frac{48\times 4a}{28a} have the same denominator, add them by adding their numerators.
\frac{\frac{-196+192a}{28a}}{7}
Do the multiplications in -28\times 7+48\times 4a.
\frac{\frac{4\left(48a-49\right)}{28a}}{7}
Factor the expressions that are not already factored in \frac{-196+192a}{28a}.
\frac{\frac{48a-49}{7a}}{7}
Cancel out 4 in both numerator and denominator.
\frac{48a-49}{7a\times 7}
Express \frac{\frac{48a-49}{7a}}{7} as a single fraction.
\frac{48a-49}{49a}
Multiply 7 and 7 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}