Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{-x^{2}+5xy-1}{2\left(1+y-x\right)}\text{, }&x\neq y+1\\f\in \mathrm{C}\text{, }&\left(x=\frac{5-\sqrt{41}}{8}\text{ and }y=\frac{-\sqrt{41}-3}{8}\right)\text{ or }\left(x=\frac{\sqrt{41}+5}{8}\text{ and }y=\frac{\sqrt{41}-3}{8}\right)\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{-x^{2}+5xy-1}{2\left(1+y-x\right)}\text{, }&x\neq y+1\\f\in \mathrm{R}\text{, }&\left(x=\frac{5-\sqrt{41}}{8}\text{ and }y=\frac{-\sqrt{41}-3}{8}\right)\text{ or }\left(x=\frac{\sqrt{41}+5}{8}\text{ and }y=\frac{\sqrt{41}-3}{8}\right)\end{matrix}\right.
Solve for x (complex solution)
x=-\frac{\sqrt{25y^{2}-12fy+4f^{2}+8f-4}}{2}+\frac{5y}{2}-f
x=\frac{\sqrt{25y^{2}-12fy+4f^{2}+8f-4}}{2}+\frac{5y}{2}-f
Solve for x
x=-\frac{\sqrt{25y^{2}-12fy+4f^{2}+8f-4}}{2}+\frac{5y}{2}-f
x=\frac{\sqrt{25y^{2}-12fy+4f^{2}+8f-4}}{2}+\frac{5y}{2}-f\text{, }f\geq \sqrt{2-3y-4y^{2}}+\frac{3y}{2}-1\text{ or }f\leq -\sqrt{2-3y-4y^{2}}+\frac{3y}{2}-1\text{ or }y\leq \frac{-\sqrt{41}-3}{8}\text{ or }y\geq \frac{\sqrt{41}-3}{8}
Graph
Quiz
Linear Equation
5 problems similar to:
f ( x ) + f ( 2 + y ) + 5 x y = f ( 3 x - y ) + x ^ { 2 } + 1
Share
Copied to clipboard
fx+2f+fy+5xy=f\left(3x-y\right)+x^{2}+1
Use the distributive property to multiply f by 2+y.
fx+2f+fy+5xy=3fx-fy+x^{2}+1
Use the distributive property to multiply f by 3x-y.
fx+2f+fy+5xy-3fx=-fy+x^{2}+1
Subtract 3fx from both sides.
-2fx+2f+fy+5xy=-fy+x^{2}+1
Combine fx and -3fx to get -2fx.
-2fx+2f+fy+5xy+fy=x^{2}+1
Add fy to both sides.
-2fx+2f+2fy+5xy=x^{2}+1
Combine fy and fy to get 2fy.
-2fx+2f+2fy=x^{2}+1-5xy
Subtract 5xy from both sides.
\left(-2x+2+2y\right)f=x^{2}+1-5xy
Combine all terms containing f.
\left(2+2y-2x\right)f=x^{2}-5xy+1
The equation is in standard form.
\frac{\left(2+2y-2x\right)f}{2+2y-2x}=\frac{x^{2}-5xy+1}{2+2y-2x}
Divide both sides by 2+2y-2x.
f=\frac{x^{2}-5xy+1}{2+2y-2x}
Dividing by 2+2y-2x undoes the multiplication by 2+2y-2x.
f=\frac{x^{2}-5xy+1}{2\left(1+y-x\right)}
Divide x^{2}+1-5xy by 2+2y-2x.
fx+2f+fy+5xy=f\left(3x-y\right)+x^{2}+1
Use the distributive property to multiply f by 2+y.
fx+2f+fy+5xy=3fx-fy+x^{2}+1
Use the distributive property to multiply f by 3x-y.
fx+2f+fy+5xy-3fx=-fy+x^{2}+1
Subtract 3fx from both sides.
-2fx+2f+fy+5xy=-fy+x^{2}+1
Combine fx and -3fx to get -2fx.
-2fx+2f+fy+5xy+fy=x^{2}+1
Add fy to both sides.
-2fx+2f+2fy+5xy=x^{2}+1
Combine fy and fy to get 2fy.
-2fx+2f+2fy=x^{2}+1-5xy
Subtract 5xy from both sides.
\left(-2x+2+2y\right)f=x^{2}+1-5xy
Combine all terms containing f.
\left(2+2y-2x\right)f=x^{2}-5xy+1
The equation is in standard form.
\frac{\left(2+2y-2x\right)f}{2+2y-2x}=\frac{x^{2}-5xy+1}{2+2y-2x}
Divide both sides by 2+2y-2x.
f=\frac{x^{2}-5xy+1}{2+2y-2x}
Dividing by 2+2y-2x undoes the multiplication by 2+2y-2x.
f=\frac{x^{2}-5xy+1}{2\left(1+y-x\right)}
Divide x^{2}+1-5xy by 2+2y-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}