Solve for f
f=\frac{39}{x+6}
x\neq -6
Solve for x
x=-6+\frac{39}{f}
f\neq 0
Graph
Share
Copied to clipboard
fx+6f=39
Use the distributive property to multiply f by x+6.
\left(x+6\right)f=39
Combine all terms containing f.
\frac{\left(x+6\right)f}{x+6}=\frac{39}{x+6}
Divide both sides by x+6.
f=\frac{39}{x+6}
Dividing by x+6 undoes the multiplication by x+6.
fx+6f=39
Use the distributive property to multiply f by x+6.
fx=39-6f
Subtract 6f from both sides.
\frac{fx}{f}=\frac{39-6f}{f}
Divide both sides by f.
x=\frac{39-6f}{f}
Dividing by f undoes the multiplication by f.
x=-6+\frac{39}{f}
Divide 39-6f by f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}