Solve for f (complex solution)
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{C}\text{, }&x=\frac{9}{26}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&x=\frac{9}{26}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x-1.
fx+2f-fx+f=\frac{26}{3}fx
To find the opposite of fx-f, find the opposite of each term.
2f+f=\frac{26}{3}fx
Combine fx and -fx to get 0.
3f=\frac{26}{3}fx
Combine 2f and f to get 3f.
3f-\frac{26}{3}fx=0
Subtract \frac{26}{3}fx from both sides.
\left(3-\frac{26}{3}x\right)f=0
Combine all terms containing f.
\left(-\frac{26x}{3}+3\right)f=0
The equation is in standard form.
f=0
Divide 0 by 3-\frac{26}{3}x.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x-1.
fx+2f-fx+f=\frac{26}{3}fx
To find the opposite of fx-f, find the opposite of each term.
2f+f=\frac{26}{3}fx
Combine fx and -fx to get 0.
3f=\frac{26}{3}fx
Combine 2f and f to get 3f.
\frac{26}{3}fx=3f
Swap sides so that all variable terms are on the left hand side.
\frac{26f}{3}x=3f
The equation is in standard form.
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
Divide both sides by \frac{26}{3}f.
x=\frac{3\times 3f}{26f}
Dividing by \frac{26}{3}f undoes the multiplication by \frac{26}{3}f.
x=\frac{9}{26}
Divide 3f by \frac{26}{3}f.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x-1.
fx+2f-fx+f=\frac{26}{3}fx
To find the opposite of fx-f, find the opposite of each term.
2f+f=\frac{26}{3}fx
Combine fx and -fx to get 0.
3f=\frac{26}{3}fx
Combine 2f and f to get 3f.
3f-\frac{26}{3}fx=0
Subtract \frac{26}{3}fx from both sides.
\left(3-\frac{26}{3}x\right)f=0
Combine all terms containing f.
\left(-\frac{26x}{3}+3\right)f=0
The equation is in standard form.
f=0
Divide 0 by 3-\frac{26}{3}x.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Use the distributive property to multiply f by x-1.
fx+2f-fx+f=\frac{26}{3}fx
To find the opposite of fx-f, find the opposite of each term.
2f+f=\frac{26}{3}fx
Combine fx and -fx to get 0.
3f=\frac{26}{3}fx
Combine 2f and f to get 3f.
\frac{26}{3}fx=3f
Swap sides so that all variable terms are on the left hand side.
\frac{26f}{3}x=3f
The equation is in standard form.
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
Divide both sides by \frac{26}{3}f.
x=\frac{3\times 3f}{26f}
Dividing by \frac{26}{3}f undoes the multiplication by \frac{26}{3}f.
x=\frac{9}{26}
Divide 3f by \frac{26}{3}f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}