Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(21t-t^{2}\right)
Factor out 6.
t\left(21-t\right)
Consider 21t-t^{2}. Factor out t.
6t\left(-t+21\right)
Rewrite the complete factored expression.
-6t^{2}+126t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-126±\sqrt{126^{2}}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-126±126}{2\left(-6\right)}
Take the square root of 126^{2}.
t=\frac{-126±126}{-12}
Multiply 2 times -6.
t=\frac{0}{-12}
Now solve the equation t=\frac{-126±126}{-12} when ± is plus. Add -126 to 126.
t=0
Divide 0 by -12.
t=-\frac{252}{-12}
Now solve the equation t=\frac{-126±126}{-12} when ± is minus. Subtract 126 from -126.
t=21
Divide -252 by -12.
-6t^{2}+126t=-6t\left(t-21\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 21 for x_{2}.