Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-3t^{2}+12t-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-12±\sqrt{144-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Square 12.
t=\frac{-12±\sqrt{144+12\left(-1\right)}}{2\left(-3\right)}
Multiply -4 times -3.
t=\frac{-12±\sqrt{144-12}}{2\left(-3\right)}
Multiply 12 times -1.
t=\frac{-12±\sqrt{132}}{2\left(-3\right)}
Add 144 to -12.
t=\frac{-12±2\sqrt{33}}{2\left(-3\right)}
Take the square root of 132.
t=\frac{-12±2\sqrt{33}}{-6}
Multiply 2 times -3.
t=\frac{2\sqrt{33}-12}{-6}
Now solve the equation t=\frac{-12±2\sqrt{33}}{-6} when ± is plus. Add -12 to 2\sqrt{33}.
t=-\frac{\sqrt{33}}{3}+2
Divide -12+2\sqrt{33} by -6.
t=\frac{-2\sqrt{33}-12}{-6}
Now solve the equation t=\frac{-12±2\sqrt{33}}{-6} when ± is minus. Subtract 2\sqrt{33} from -12.
t=\frac{\sqrt{33}}{3}+2
Divide -12-2\sqrt{33} by -6.
-3t^{2}+12t-1=-3\left(t-\left(-\frac{\sqrt{33}}{3}+2\right)\right)\left(t-\left(\frac{\sqrt{33}}{3}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2-\frac{\sqrt{33}}{3} for x_{1} and 2+\frac{\sqrt{33}}{3} for x_{2}.
x ^ 2 -4x +\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 4 rs = \frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 2 - u s = 2 + u
Two numbers r and s sum up to 4 exactly when the average of the two numbers is \frac{1}{2}*4 = 2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(2 - u) (2 + u) = \frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{3}
4 - u^2 = \frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{3}-4 = -\frac{11}{3}
Simplify the expression by subtracting 4 on both sides
u^2 = \frac{11}{3} u = \pm\sqrt{\frac{11}{3}} = \pm \frac{\sqrt{11}}{\sqrt{3}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =2 - \frac{\sqrt{11}}{\sqrt{3}} = 0.085 s = 2 + \frac{\sqrt{11}}{\sqrt{3}} = 3.915
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.