f ( t ) = \sin ^ { 2 } t | ( t )
Solve for f
\left\{\begin{matrix}f=\frac{|t|\left(\sin(t)\right)^{2}}{t}\text{, }&t\neq 0\\f\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=0\text{, }&\text{unconditionally}\\t=-\arcsin(\sqrt{f})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq \frac{\arcsin(\sqrt{f})}{2\pi }\text{; }t=\arcsin(\sqrt{f})+2\pi n_{2}+\pi \text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}\geq -\frac{\arcsin(\sqrt{f})+\pi }{2\pi }\text{; }t=\arcsin(\sqrt{f})+2\pi n_{3}\text{, }n_{3}\in \mathrm{Z}\text{, }n_{3}\geq -\frac{\arcsin(\sqrt{f})}{2\pi }\text{; }t=-\arcsin(\sqrt{f})+2\pi n_{4}+\pi \text{, }n_{4}\in \mathrm{Z}\text{, }n_{4}\geq -\frac{-\arcsin(\sqrt{f})+\pi }{2\pi }\text{, }&f\geq 0\text{ and }f\leq 1\\t=-\arcsin(\sqrt{-f})+2\pi n_{5}\text{, }n_{5}\in \mathrm{Z}\text{, }n_{5}\leq \frac{\arcsin(\sqrt{-f})}{2\pi }\text{; }t=\arcsin(\sqrt{-f})+2\pi n_{6}+\pi \text{, }n_{6}\in \mathrm{Z}\text{, }n_{6}\leq -\frac{\arcsin(\sqrt{-f})+\pi }{2\pi }\text{; }t=\arcsin(\sqrt{-f})+2\pi n_{7}\text{, }n_{7}\in \mathrm{Z}\text{, }n_{7}\leq -\frac{\arcsin(\sqrt{-f})}{2\pi }\text{; }t=-\arcsin(\sqrt{-f})+2\pi n_{8}+\pi \text{, }n_{8}\in \mathrm{Z}\text{, }n_{8}\leq -\frac{-\arcsin(\sqrt{-f})+\pi }{2\pi }\text{, }&f\geq -1\text{ and }f\leq 0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}