Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for r_11 (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for r_11
Tick mark Image
Graph

Similar Problems from Web Search

Share

fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Use the distributive property to multiply \sqrt[3]{x}-4x^{2}-16 by \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiply both sides of the equation by 2.
2r_{11}yf=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
The equation is in standard form.
\frac{2r_{11}yf}{2r_{11}y}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Divide both sides by 2r_{11}y.
f=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Dividing by 2r_{11}y undoes the multiplication by 2r_{11}y.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Use the distributive property to multiply \sqrt[3]{x}-4x^{2}-16 by \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiply both sides of the equation by 2.
2fyr_{11}=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
The equation is in standard form.
\frac{2fyr_{11}}{2fy}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Divide both sides by 2fy.
r_{11}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Dividing by 2fy undoes the multiplication by 2fy.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Use the distributive property to multiply \sqrt[3]{x}-4x^{2}-16 by \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiply both sides of the equation by 2.
2r_{11}yf=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
The equation is in standard form.
\frac{2r_{11}yf}{2r_{11}y}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Divide both sides by 2r_{11}y.
f=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Dividing by 2r_{11}y undoes the multiplication by 2r_{11}y.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Use the distributive property to multiply \sqrt[3]{x}-4x^{2}-16 by \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiply both sides of the equation by 2.
2fyr_{11}=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
The equation is in standard form.
\frac{2fyr_{11}}{2fy}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Divide both sides by 2fy.
r_{11}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Dividing by 2fy undoes the multiplication by 2fy.