Solve for a
\left\{\begin{matrix}a=-cn^{2}-bn+\frac{f}{n}\text{, }&n\neq 0\\a\in \mathrm{R}\text{, }&f=0\text{ and }n=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{f-an-cn^{3}}{n^{2}}\text{, }&n\neq 0\\b\in \mathrm{R}\text{, }&f=0\text{ and }n=0\end{matrix}\right.
Share
Copied to clipboard
fn-\left(fn-f\right)=an+bn^{2}+cn^{3}
Use the distributive property to multiply f by n-1.
fn-fn+f=an+bn^{2}+cn^{3}
To find the opposite of fn-f, find the opposite of each term.
f=an+bn^{2}+cn^{3}
Combine fn and -fn to get 0.
an+bn^{2}+cn^{3}=f
Swap sides so that all variable terms are on the left hand side.
an+cn^{3}=f-bn^{2}
Subtract bn^{2} from both sides.
an=f-bn^{2}-cn^{3}
Subtract cn^{3} from both sides.
an=-cn^{3}-bn^{2}+f
Reorder the terms.
na=f-bn^{2}-cn^{3}
The equation is in standard form.
\frac{na}{n}=\frac{f-bn^{2}-cn^{3}}{n}
Divide both sides by n.
a=\frac{f-bn^{2}-cn^{3}}{n}
Dividing by n undoes the multiplication by n.
a=-cn^{2}-bn+\frac{f}{n}
Divide -cn^{3}-bn^{2}+f by n.
fn-\left(fn-f\right)=an+bn^{2}+cn^{3}
Use the distributive property to multiply f by n-1.
fn-fn+f=an+bn^{2}+cn^{3}
To find the opposite of fn-f, find the opposite of each term.
f=an+bn^{2}+cn^{3}
Combine fn and -fn to get 0.
an+bn^{2}+cn^{3}=f
Swap sides so that all variable terms are on the left hand side.
bn^{2}+cn^{3}=f-an
Subtract an from both sides.
bn^{2}=f-an-cn^{3}
Subtract cn^{3} from both sides.
bn^{2}=-cn^{3}-an+f
Reorder the terms.
n^{2}b=f-an-cn^{3}
The equation is in standard form.
\frac{n^{2}b}{n^{2}}=\frac{f-an-cn^{3}}{n^{2}}
Divide both sides by n^{2}.
b=\frac{f-an-cn^{3}}{n^{2}}
Dividing by n^{2} undoes the multiplication by n^{2}.
b=-cn+\frac{f-an}{n^{2}}
Divide -cn^{3}-an+f by n^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}