Solve for f, n, W
f=15
n\in \mathrm{R}
W = \frac{15}{4} = 3\frac{3}{4} = 3.75
Share
Copied to clipboard
fn-\left(fn-f\right)=15
Consider the first equation. Use the distributive property to multiply f by n-1.
fn-fn+f=15
To find the opposite of fn-f, find the opposite of each term.
f=15
Combine fn and -fn to get 0.
15\times 1=4W
Consider the second equation. Insert the known values of variables into the equation.
15=4W
Multiply 15 and 1 to get 15.
4W=15
Swap sides so that all variable terms are on the left hand side.
W=\frac{15}{4}
Divide both sides by 4.
f=15 W=\frac{15}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}